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Abstract. In this paper we present a unified treatment of a modified singular manifold 
expansion method as an improved variant of the Painlev6 analysis for partial differential 
equations with two branches in the Painlev6 expansion. We illustrate the method by fully 
applying it to the Boussinesq classical system and the Mikhailov-Shabat system. 

1. Introduction 

Integrability still seems to be a word with elusive meaning. Many efforts have been 
dedicated, in the last decade to the quest for a more definite and precise concept of 
integrability. It would be impossible (and outside the scope of this paper) any attempt 
to articulate a consistent framework encompassing all these efforts. We shall try to 
make some progress on one particular interconnection of this network the relationship 
between integrability and the PainlevC property [I]. This is also closely related to the 
already classic paper by Weiss, Tabor and Camevale [Z] on the Painlev6 test for partial 
differential equations. 

Our first observation is based on the fact that PainlevC test for PDE has paved the 
way for establishing (as it has been shown in a variety of examples [3,4]) the relation 
among the singular manifold method [5], based on the truncation of the Painlevd 
series, and Hirota's bilinear formalism based on the definition and use of the 7-function 
[6,20,21] which has been proved to be extremely successful for the explicit construction 
of N-soliton solutions. 

One important drawback of this parallelism appears when this last approach uses, 
for the N-soliton construction, more than one ?-function. In this case the relationship 
among both approaches loses its meaning. 

In this paper we give strong support to the conjecture that the number of ?-functions 
used in Hirota's method equals the number of branch expansions in PainlevC's singular 
manifold approach. For this to be true we shall need to generalize the latter to more 
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than one singular manifold expansion. We shall do this in two cases: The classical 
Boussinesq system (CB) [7]; 

P G Esthez et a/ 

U, + 0, + uu, = 0 
0, +U, + (uO)x = 0 

(1.lu) 
( l . l b )  

and the Mikhailov-Shabat system (MS) that appears in the classification of integrable 
systems given by these authors [8,9]; 

~ , = ~ ~ + ( ~ + s ) e - ( ~ + q ) ’ / 6  (1.2a) 
-qr = qxx - ( P +  q)px - ( P +  ~) ’ /6 .  (1.26) 

Hirota and Satsuma have constructed N-soliton solutions of both systems using the 
bilinear formalism [lo]. On the other hand Sachs has analysed the PainlevC property 
for CB [ l l ]  and Flaschka, Newell and Tabor for MS [12]. Also Conte [I31 has studied 
the PainlevC property and found a Lax pair for a version of MS in PDE form that will 
be described below. 

In section 2 we shall be briefly reviewing the PainlevC test in the WTC version [2] 
for the CB system. The problems arising in the traditional singular manifold method 
will also be discussed. The rest of the section \uill be entirely dedicated to our conjecture 
and constitutes the core of the paper. We shall be introducing a new expansion using 
two singular manifolds and the two different expansion branches will be presented 
and discussed. Using our new procedure we shall be able to construct both the 
auto-Backlund transformations and its Lax pair for the CB system in section 3. As a 
bonus a method for generating solutions in an iterative manner using only linear 
equations will be briefly described. The relationship among Hirota’s method and ours 
will also be presented. All this analysis will be applied again to the MS system in section 
4 to provide further support to our conjecture. We close with some comments and 
prospects for further research along these lines. 

2. The Boussinesq system and the singular manifold method 

The classical Boussinesq system (cB): 
U, + 0, + uy, = 0 
U,+ U,+ (uw) ,  =o 

( 2 . 1 ~ )  
(2.lb) 

is known to be an appropriate model for describing the behaviour of water waves in 
shallow channels [7]. On the theoretical side it is also known to be defined as the 
compatibility condition of a Lax pair [15] and to be solvable through the inverse 
scattering method [14, 151. On the other hand Hirota has shown [16] that the bilinear 
formulation of (2.1) is a reduction of the modified KP equation. This allows us to 
obtain multisolitonic solutions for CB through the reduction of those obtained by Jimbo 
and Miwa [I71 for the KP hierarchy. 

On the other bank of the river Sachs has shown [ l l ]  that (2.1) has the Painlev6 
property. We shall briefly sketch here his main results. The PainlevC test in the wc 
version [2] requires the functions U and w be expanded in the form: 

( 2 . 2 ~ )  

(2.26) 

j - 0  
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where $(x, t )  is an arbitrary function: the celebrated movable singularity manifold. 
The exponents r and s and the functions uo and w,, in (2.2) are determined through 
the usual balance of dominant terms. If there exist several solutions of these balance 
equations one usually speaks of different expansion branches. For instance in the case 
of the system (2.1) one has the following solutions of the balance equations: 

r = l  (2.3a) 
s = 2  (2.36) 
uo = 2a45 ( 2 . 3 ~ )  

oo= -24:  (2.3d) 

but a can take the values *l so that (2.1) has two diferent expansion branches. Sachs 
has shown [ l l ]  that (2.1) possesses the Painlev6 property in both expansion branches. 
Also he has applied to this system the singular manifold method [ 5 ] ,  i.e. assuming a 
truncated expansion we try to identify whether there exists a +(x, t )  verifying 

Ub. t )  = z t ) V ( X ,  t )  (2.4a) 

w(x ,  t )  = z Oj(X, t )+ j - * (x ,  t ) .  (2.46) 

The usual way to proceed after inserting (2.4) into (2.1) is to assume that aNcoeficients 
for each power of 4 vanish independently. In so doing one obtains: 

uo = 2a& (2.5a) 

=-I+t+a4,1/+x (2.5b) 
wo= - 2 ( 4 d 2  ( 2 . 5 ~ )  

U1 = 2+= (2.5d)  
w 2 =  a ( U l L  ( 2 . 5 ~ )  

where a = * l  and U, and w1 must be solutions of (2.1). This is why the truncated 
expansion (2.4) is actually an auto-Backlund transformation among solutions of (2.1). 

However, as it was already pointed out by Sachs [ l l ]  the equations (2.5) restrict 
us to solutions of (2.1) that additionaily verify the constraint o = au, in which case 
the system reduces to the Burgers equation: 

u, + uu, + au, = 0. (2.6) 
As it has been described, the singular manifold method is obviously inadequate to 
deal with several expansion branches and consequently for a possible interconnection 
with the Hirota bilinear method. We now propose an important modification of the 
method based upon the following considerations: 

( 1 )  Several criticisms have been already appeared in the literature concerning the 
singular manifold method as it has been described (13,121). Specifically the assumption 
that the coefficients have to vanish independently for each power of 4 has been seen 
as too much of a restrictive condition since all what we need to demand is that the 
truncation ansatz (2.4) must be satisfied. However this requirement could be fulfilled 
just by setting to zero the sum of all contributions for each different power of 4. Such 
modifications have already been discussed in the framework of some particular evol- 

j = 0  

j = 0  

ution equations ([4, 121). 
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(2) On the other hand the connection between the singular manifold method and 
the Hirota formalism 14, 211 lies on the interpretation of (2.4) as an auto-Backlund 
transformation of the form 

,-I 

j - 0  

I- 1 

j - 0  

U(& t)  = c U+, t)&-‘(n, t ) +  U, 

4 x ,  t ) =  c W j ( &  O P ( &  t ) + %  

( 2 . 7 ~ )  

(2.7b) 

where (U,, w.) and (U, w )  are solutions of the system (2.1). As any Backlund transforma- 
tion this is just an iterative procedure for finding more complicated solutions starting 
with the simplest ones. The question is that having several expansion branches we 
make an unnecessary choice by using, as a seed solution, one of a definite branch. In 
doing so we will always stick to that branch henceforth neglecting all other solutions. 

From all these considerations we propose to modify the singular manifold expansion 
in the following way. First we identify the number of independent expansion branches. 
After that we modify the expansion (2.4) by using as many singular manifolds as 
expansion branches. The generalized form of (2.4) for two expansion branches takes 
the form 

, - I  S-I 

j = 0  j = 0  

w.4j-= , + uJ;ff’-”+w, 

(2.8a) 

(2.8b) 

where we have taken (uo, wo)  for one expansion branch and (U;, wQ for the other. 
If we make any attempt to express the solutions in the form of an expansion, as 

(2.8), we have necessarily to deal with crossed terms coming from 4 and e coefficients 
when inserting (2.8) into (2.1). We now remind the reader of the remarks we have 
made previously with regard to setting the coefficients to zero. Also, we have to find 
a way to rewrite auto-Backlund transformations of the kind above described if we 
want to be successful in relating Painlev6 analysis and Hirota formalism. All these 
ideas will be developed to a large extent when specifically applied to the CB system. 
We will do this in the next section. 

3. The method of the two singular manifolds for the Boussinesq system 

Let us construct an auto-Backlund transformation of the form (2.8) for the CB system 
(2.1). Restricting ourselves for the moment to the a = 1 branch we look for a truncated 
expansion of the form 

U =2(&/+)+ U1 ( 3 . 1 ~ )  
0 = - 2 ( + x / 4 ) a + 2 ( 4 J + ) + 0 2  (3.lb) 

which after substitution in (2.1) yields 

( U I ) ,  + UI(Ul)X + (4 +2I($tw/4)+ (+, /+)+%(+X/dJ)L = 0 ( 3 2 )  

Dropping for a moment the requirement that different powers of 4 must have indepen- 
dent vanishing coefficients then ( ul ,  w a )  do not have to be a set of solutions of CB and 

(WA +(U,), + ( w ~ ) ~  + 2 { w . + ) , +  (M+L+ u2(bx/+) + U ~ ( + J + ) A  = 0 (3.26) 
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we can reinterpret (3.2) as a new system for which we again look for a truncated 
expansion. Since the dominant terms of (3.2) are of the same nature as those of (2.1) 
we now take the other branch a = -1 in the form: 

U, = -2(ux/u) + (I (3.3a) 

w, = -2(ux/u)~+2(uJu)+p.  (3.36) 

U = 2 N + J + ) - ( ~ / u ) } + a  (3.4a) 

Combining this last expression with (3.1) we easily find: 

w = 2{(+x/+) + ( % / U ) L + P .  (3.46) 

We now demand ( a , p )  that be a solution of (2.1). Automatically (3.4) will be the 
auto-Backlund transformation we are looking for. Substituting (3.3) in (3.2) we obtain 
for + and U the expressions 

( + ~ / + ) [ . . + u l + w , l - ( o ; / ~ ) [ a - ~ ~ + H ' 2 1 = 2 ( 0 ; / ~ ) ( + ~ / + )  

( + x / + ) [ P +  VI,+ w l x + { U l - ( + x / @ ) ) { a +  U,+ WI -2(ux/u))l 
(352)  

- ( u x / ~ ) [ P  + 0 2  - ~ 2 x - { u z - ( ~ x / ~ ) H a  - UZ+ ~ z + 2 ( + x / + ) ) I = O  (3.56) 
where U, and w, are defined as usual ([18, 191): 

01 = (+%x/+A wt=(+t /+x)  ( 3 . 6 ~ )  

U2 = (G/%) w2 = (ut/4. (3.66) 

We finally see through this procedure that (3.4) is an auto-Backlund transformation 
that allows us to generate a solution (U, a) starting from another known solution (a, p )  
within the framework of the two singular manifolds + and U verifying (3.5). 

Furthermore, the pair of equations (3.5) can greatly be simplified by substituting 
( 3 . 5 ~ )  in (3.56) and also in the derivative of the former. After this step we impose the 
coefficients of +x and ur to vanish. Then we obtain: 

a = -U, - w 1  +U,- W? 

p =$[ w:+ w~:-u:- U;] 

u,,+W,,+r(o, + w1)(v2- w2-u,+w,) = o  

(3.7a) 

(3.76) 

(3.7c) 

(3.7d) 

We recall that ((I, p )  must be solutions of the CB system. Supposing (3 .74 6)  satisfy 
(2.1) we are lead to the following relation: 

(3.8) 

A crucial observation at this point is that (3.8) can be written as the compatibility 
condition of a linear system in the form: 

Y x  bo[ul+ W I  + uZ- wJY (3.9a) 

Y, = bo[wi(t+ + w I ) +  w ~ ( u ~ - w ~ ) I Y .  (3.96) 

Taking bo = a we are able to express (3.9) as a function of the solutions ((I, p )  in the form: 

Yxx = [(a2/16) -@/4)1Y (3.10a) 

Yt =(aX/4)Y - (a/2)Yx.  (3.106) 

UZX - w2x+r(U2- w,)(-u, - w,+ U,+ wl) = 0. 

( U I + W l +  0 2 -  W2)r = [ w I ( % + w l ) +  w2(u2- w2)lx. 
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Using (3.7~7) and (3 .9~)  and taking into account (3.6) we obtain, for + and U, the 
following linear equations: 

+ ~ ~ + + , + [ ( a / 2 ) - 2 ( y ~ / Y ) l + ~  = o  (3.11a) 

P G Estiuez et a/ 

U= -U, - [ ( . /2)  + 2 ( 9 J Y ) ] U Z  = 0. (3.1 1 b) 

Let us briefly summarize the procedure we have found to generate solutions of the CB 
system: 

(1) We begin with a known solution (a,p) of (2.1). Inserting this in (3.10) we 
obtain Y(x, t). 

(2) With Y(x, t )  we solve the linear equations (3.11) obtaining +(.q f )  and u(x ,  t ) .  
However, we should recall that + and U must also satisfy (3.5a) since, so far, only 
the derivative of this equation had been used. 

(3) Finally we can generate a new solution (U, U )  using the auto-Backlund transfor- 
mation (3.4). 

Let us apply this procedure to the CB system (2.1) using the following trivial solution 

(3.12~) ff = a. = constant 

p =Po = constant. (3.126) 

A solution of (3.10) in this case appears as: 

P(x, t)=exp{k(x-ut)} (3.13) 

where 

0 = (ao/2) (3.14~~) 

P o =  v2-4k2. (3.146) 

Now the solutions of (3.11) are: 

4 (x, t )  = A. + C A. exp{2kn (x - U J ) }  (3.151) 

u ( x , t ) = B o + ~ B . e x p { 2 k ; ( x - u : , t ) }  (3.156) 

where Ao, Bo, A., B., are arbitrary constants while u., k,,, U; and k; satisfy: 

2k. - V. =2k- U 

2k; + U; =2k+ U. 

(3.16~7) 

(3.16b) 

But + and U must also satisfy (3.5~1). Inserting (3.15) in ( 3 . 5 ~ )  we obtain a different 
set of solutions depending on whether po = 0 or po # 0. We shall be dealing with these 
two cases separately: 

(I) &=O. According to (3.14b) po=O implies u=*2k. We have to distinguish also 
among these two cases: 

(La) u = -2k In this case (3.5a) leads to the following solutions for + and U :  

+(x, t )  = A exp{2k( x + 2kt)} (3.17a) 

u ( ~ , t ) = B ~ + ~ B , e x p { 2 k ~ ( x + 2 k ; t ) }  (3.176) 

and then the solution (3.4) takes the form: 
u(x ,  t )  = -2(ux/u) (3.18~~) 

o(x, t )  = - U x .  (3.18b) 
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Using (3.186) in (2.1) we can easily reduce the CB system to the Burgers equation. 
Also (3.180) corresponds to a particular solution of this equation describing the 
confluence of shock waves [7]. 

(1.b) U = +2k Using the same procedure as before we obtain: 

@(x, t ) = A o + ~ A , e x p { 2 h ( x - 2 ~ t ) }  (3.19a) 

U(& t)=Bexp{Zk(x-Zkt)} (3.19b) 

(3.19~) 

(3.19d) 

that corresponds through (3.19d) to another reduction to Burgers equation. 

(11) po#O. In this case equation (3.5~1) leads to 

k, = kk=  k ( 3 . 2 0 ~ )  

u . = u : , = u  (3.206) 

( 4 J 4 ) ( ~ + 2 k )  - ( 4 . ) ( ~ - 2 k )  = 2 ( 4 J 4 ) ( e x / @ )  (3.20~) 

so that we obtain 

4b, t )  =Ad1  + q  exp{2k(x-u0+aoM 

u ( x ,  t )  = Bo[l + p  exp{2k(x - u t )  +ao}] 

where p and q are given by 

q = v + 2 k  

p=o-Zk 

and finally the solution can be written as 

= 2 u + 2 [ ( 4 , / 4 ) - ( ~ , / ~ ) 1  

o = u2-4k2+2[(+J4)+ ( U J U ) ] ~ .  

(3.21a) 

(3.216) 

(3.22a) 

(3.226) 

(3.23a) 

(3.236) 

This is the soliton founded by Kaup [I51 using the inverse scattering method and by 
Hirota [16] through the bilinear formalism. 

At this point one can easily establish the relationship with Hirota bilinear formalism. 
From the initial solution (eo, Po) we apply the transformation (3.4) an arbitrary number 
of times following the procedure already described in each one of the steps. After n 
steps we obtain 

U(n' =2{[(4")d4.1 -[(%)x/%I}+ U'"-') 



1922 

To find both sets of 7-functions we just define: 

P G Estgvez et a1 

T='#'I '#'z . .  .'#'" (3.25a) 

T ' = U l U 2 . .  . U. (3.256) 
and the solutions of the CB system can be now expressed in the form 

U ao+ 2[10g(T/T')], (3.26a) 

= Pa+2[log(")l, (3.266) 

A final observation concerns the Galilean invariance of the CB system. Under the 

x' = x - A t  (3.27a) 

u '=u-A (3.276) 

the equations (2.1) remain invariant. This symmetry can be used to introduce the 
spectral parameter in the linear system (3.10). To see this one can just apply the 
transformation (3.27) to (3.10) obtaining: 

v- =[((a+A)/4)'-(8/4)1v (3.28a) 

Y , = ( ~ ~ / 4 ) Y - ( ( a - ~ ) / 2 ) Y ~ .  (3.286) 

as required by the Hirota bilinear formalism [16]. 

transformation: 

This is exactly the Lax pair found by Jaulent and Miodek [14]. 

4. The method of the two singular manifolds for the Mikhailov-Sbabat system 

As already noted in section 1, the system given by the equation (1.2) was first classified 
as an integrable system by Mikhailov and Shabat ( [ S ,  91). We shall be referring to it 
as the MS system. Let us introduce the transformation 

u = p + q  (4.la) 

o = q x  - p x .  (4.lb) 

Then, the MS system (1.2) becomes 
U, + I& - uy, = 0 
o,+ U, + uo,+ u,o - u2ux = 0. 

(4.2a) 

(4.26) 

Now we set U = 0,. After substitution, (4.2) transform into the single PDE: 

(4.3) 1 2  U,, - v, + up, - 10, U, = 0. 
This equation also corresponds to one of the modified Boussinesq equations found 

by Hirota and Satsuma [IO]. The singular manifold analysis has been camed out by 
Conte [13]. Now we shall apply to this equation our method by first taking into account 
the number of expansion branches. A simple look at the dominant terms of the 
expansion (2) for (4.3) leads to the following choices: 

r = l  (4.4a) 

s=2 (4.46) 
uo = a h  (4.4c) 

o0=-6'#': (4.4d) 
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where y2 = -12 and again a can be +I or -1. We again face a two expansion branch 
problem. As in the previous case we shall assume the existence of two different singular 
manifolds + and U that allow a truncation solution of (4.2) in the form: 

U = Y [ ( + x / + ) - ( % / U ) l + a  (4.5a) 

= 6 [ ( + x / ~ ) + ( o ; / ~ ) 1 x + P  (4.56) 

where (a,  p )  is a set of solutions of the same MS system (4.2). Inserting (4.5) into (4.2) 
we obtain for + and U the following equations: 

( + ~ / + ) [ ~ ~ + ~ ~ I - Y ~ I + ( ~ ~ / ~ ) [ - Y w ~ + ~ u ~ +  V I  = lXux/u)(+x,'+) ( 4 . 6 ~ )  

(+x/+){6(wix+ W i u i ) +  ~ ( v i x +  U : )  + YP + 6 0 1 e  -~a'} 

+ ( e x /  ~ ) { 6 (  ~ 2 x  + w2 U Z )  - Y ( u z x  + 0:) - YP + 6 0 2  a + 7/a '} 

+ ( + : / + 2 ) { 3 y ~ l  + 6a: - 6wI}+ ( u : / u ' ) { - ~ ~ u Z  + 601 - 6 ~ 2 }  

+ ( + , / + ) ( 0 ; / ~ ) { 6 ~ ~ 2 - 6 ~ ~ i + 6 ~ ( ~ ~ / 0 ) - 6 ~ ( ~ ~ / + ) - 2 4 ~ } = 0 .  (4.66) 

As in section 3 ui and wi are defined by (3.6). We now combined the previous equations 
in the following form: substitute ( 4 . 6 ~ )  into (4.66) and also in the derivative of (4 .6~) .  
After that we set to zero all coefficients in U= and &. A rather tedious and cumbersome 
calculation yields: 

(4.70) 

(4.76) 
0 = -w, - w z - ( r / ~ ) ~ , + ( r / 2 ) %  
2p = -4v,,-4u2, -a :+  w:- U;+ w: 

(4.7c) 

(4.7d) 

Since (a,  p )  must also be a soIution of (4.2) we suppose that equation (4.2) must 
be satisfied by (4.7). Then we arrive at the condition: 

[ W l  - w2 + ( Y / 2 ) U I +  (Y/2)UZI, 

= [2VI ,  -2u2,+ ( ~ l / 2 ) ( Y w l - 2 U , ) + ( ~ 2 / 2 ) ( r w 2 + 2 u 2 ) 1 ~ .  (4.8) 
Again, as in section 3, (4.8) is nothing but the compatibility condition of the linear 
system: 

vx = $ [ W I  - w ~ + ( Y / ~ ) ~ I  + ( Y / ~ ) V Z ~ *  

9, = bo[2ulX -2u2,+ ( u , / ~ ) ( Y w ,  - 2 ~ t ) +  ( ~ J 2 ) ( y ~ 2 + 2 t ~ 2 ) ] ' € " .  

(4.9a) 

(4.96) 

Setting bo = (2y)-' and with the help of (4.7) one can easily re-express (4.9) just in 
terms of ( a ,  p )  in the form: 

(4 .10~)  

(4.106) 

We call the reader's attention to the curious fact that (4.10) represents exactly the same 
Lax pair as that for the CB system [see (3.lO)l. There is only one, quite important, 
difference. The spectral parameter has been dropped from (4.10). As we have already 
discussed one can use Galilean invariance to reinstate the spectral parameter in the 
CB system. Nevertheless the MS system lacks such an invariance. 
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The question of the spectral parameter is certainly an intriguing one but for us it 
is now meaningless since we can generate the solutions from (4.10) just as well. Starting 
from some known solution ( L Y , ~ )  we solve (4.10). Then using (4.7a) and (4.9a) we 
find 4 and U from the pair of linear equations 

(4.11a) 

(4.1 1 6) 
We also have to check whether 4 and U satisfy (4.6a). Finally, the auto-Backlund 
transformation (4.5) provides us a new solution (U, 0 ) .  

As in the previous section we choose (a, p )  = (ao, pa) = (constants). Then, we obtain 
from (4.10) 

Y(x, t)=exp[k(x-ut)) (4.12a) 

74, - 6 L +  [ ( ~ / 3 +  12Wx/Y)14x = O  
yu, +6uG+ [(yrr/2) - 12('€',y/Y)]ux = 0. 

(4.126) 

(4.12~) 

while the solution of (4.11) [together with (4.6a)l yields for 4 and U the expressions 

(4.13a) 

(4.136) 

&(x, t) = 1 + q exp{2k(x - ut + qo)} 

u(x, t )  = 1 + p  exp{2k(x- ut+qo)} 
where qo is an arbitrary constant. Also q and p are given by 

q = y v f 4 k  (4.14a) 

p = y ~ - 4 k  (4.146) 

and finally from (4.5) we obtain the (U, o) solution in the form 
U = ?.U+ (8k2Ao/u){A,+coth[2k(x-ut+ eo)]}-' 

w = uZ-4kZ+24k2{1 + Ao ~0th[2k(x - U t  + eo)]} {Ao+coth[2k(x - ut+ 

(4.15a) 

(4.156) 

where 
A0 = [3 u2/(302 + 4k2)1 (4.16a) 

and 

exp(2ke0) = (pq)1'2 exp(21op0). (4.166) 

Notice that in spite of y being an imaginary constant, the obtained solitonic solution 
is indeed real. 

5. Conclusions 

In this paper we have shown through two detailed examples that the conjecture of the 
multiple singular manifold expansion for integrable systems with multiple expansion 
banches definitely works. The more general question as to whether this can be generally 
proved is of course much more delicate but we believe we have presented a handful 
of good reasons to convince the reader that this general proof can be given shortly. 

We should not forget however other less fundamental but equally important prob- 
lems we have left partially open. From our point of view the most interesting one is 
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the question of symmetries. At first sight one could be tempted to extrapolate the fact 
that the two Lax pairs are the same as to speculate that both dynamics are equivalent. 
The set of different symmetries constitutes a serious drawback to this assumption. 
Obviously this set of symmetries is connected with how one should introduce the 
spectral parameter and this point makes all the difference between the integrable system 
we are interested in. 

Thus, it will be of primary importance to add to our consideration a thorough study 
of the symmetry group leaving the system invariant in order to see where and how the 
question of the invariance became so important as to arise as the main dynamical 
difference among apparently equivalent integrable systems. Work in this direction is 
also in progress. 

Another interesting open question refers to the poly-Painlev6 criterion introduced 
by Kruskal and Clarkson [I]. This method is used to examine simultaneously several 
branch points of an ODE. It will be very interesting in the near future to consider this 
method for stationary versions of the CB and MB systems. 
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